An Ensemble Approach for Incremental Learning in Nonstationary Environments
نویسندگان
چکیده
We describe an ensemble of classifiers based algorithm for incremental learning in nonstationary environments. In this formulation, we assume that the learner is presented with a series of training datasets, each of which is drawn from a different snapshot of a distribution that is drifting at an unknown rate. Furthermore, we assume that the algorithm must learn the new environment in an incremental manner, that is, without having access to previously available data. Instead of a time window over incoming instances, or an aged based forgetting – as used by most ensemble based nonstationary learning algorithms – a strategic weighting mechanism is employed that tracks the classifiers’ performances over drifting environments to determine appropriate voting weights. Specifically, the proposed approach generates a single classifier for each dataset that becomes available, and then combines them through a dynamically modified weighted majority voting, where the voting weights themselves are computed as weighted averages of classifiers’ individual performances over all environments. We describe the implementation details of this approach, as well as its initial results on simulated non-stationary environments.
منابع مشابه
A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملLearning Framework for Non-stationary and Imbalanced Data Stream
Abstract—Although learning on non-stationary data and imbalanced data have been extensively studied in the literature separately, however little work has been done to tackle the imbalanced issue on nonstationary data stream as the joint probability distribution between the data and classes changes with time and may results skewed class distribution. Especially in airlines delay detection, data ...
متن کاملData mining for algorithmic asset management: an ensemble learning approach
Algorithmic asset management refers to the use of expert systems that enter trading orders without any user intervention. In particular, market-neutral systems aim at generating positive returns regardless of underlying market conditions. In this chapter we describe an incremental learning framework for algorithmic asset management based on support vector regression. The algorithm learns the fa...
متن کاملTowards incremental learning of nonstationary imbalanced data stream: a multiple selectively recursive approach
Difficulties of learning from nonstationary data stream are generally twofold. First, dynamically structured learning framework is required to catch up with the evolution of unstable class concepts, i.e., concept drifts. Second, imbalanced class distribution over data stream demands a mechanism to intensify the underrepresented class concepts for improved overall performance. To alleviate the c...
متن کاملSelective negative correlation learning approach to incremental learning
Negative correlation learning (NCL) is a successful approach to constructing neural network ensembles. In batch learning mode, NCL outperforms many other ensemble learning approaches. Recently, NCL has also shown to be a potentially powerful approach to incremental learning, while the advantages of NCL have not yet been fully exploited. In this paper, we propose a selective NCL (SNCL) algorithm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007